

Abstract

Web injection flaws pose substantial security risks to organizations, making it imperative

to have a comprehensive understanding of these vulnerabilities and implement effective

mitigation strategies. This report focuses on examining and addressing web injection

flaws, providing demonstrations to showcase their exploitation, outlining mitigation

strategies, and evaluating their advantages and disadvantages.

The report initially explores different types of web injection flaws. Through practical

demonstrations, it highlights the potential impact of these vulnerabilities on web

applications, emphasizing the urgency of addressing them.

The report proposes a range of strategies, including input validation, secure coding

practices, web application firewalls (WAFs), and secure configuration to mitigate various

injection flaws. It evaluates the strengths and weaknesses of each strategy, considering

factors such as effectiveness, ease of implementation, and potential impact on system

performance and user experience.

This report serves as a valuable resource for security professionals, developers, and

organizations seeking to gain a deeper understanding of web injection flaws, mitigate

their impact, and evaluate their implications on their systems.

Table of Contents

1. Introduction .. 1

1.1 Current Scenario .. 1

1.2 Problem Statement .. 2

1.3 Aim and Objectives .. 2

2. Background .. 3

2.1 Command Injection .. 3

2.2 Session Hijacking ... 5

2.3 Pre-requirements and Tools ... 6

2.3.1 Damn Vulnerable Web Application (DVWA) .. 6

2.3.2 Kali Linux ... 6

2.3.3 Metasploitable ... 6

2.3.4 Windows Machine ... 6

2.3.5 Graphical Network Simulation (GNS3) .. 7

2.3.6 VMware Workstation Pro ... 7

3. Demonstration .. 8

3.1 Network Simulation .. 8

3.2 IP Addresses of machines ... 9

3.3 Demonstration of Command Injection .. 11

3.3.1 Active Reconnaissance ... 11

3.3.2 Enumeration .. 12

3.3.3 Exploitation .. 13

3.3.4 Privilege Escalation ... 15

3.3.5 Post-Exploitation .. 16

3.4 Demonstration of Session Hijacking via XSS ... 18

3.4.1 Payload Injection ... 18

3.4.2 Interaction of user with the payload ... 19

3.4.3 Session hijacking using the cookie .. 20

4. Mitigation .. 22

4.1 Mitigation of the command injection ... 22

4.2 Mitigation of the session hijacking via XSS .. 23

5. Evaluation .. 24

5.1 Advantages of the mitigation strategy .. 24

5.2 Disadvantages of the mitigation strategy ... 25

5.3 Cost Benefit Analysis (CBA)... 25

6. Personal Reflection .. 27

7. References ... 28

Table of Figures

Figure 1 Top 5 Attack by Vulnerability Categories (Fox, 2022). 1

Figure 2 How command injection works (Imperva, 2023). ... 4

Figure 3 How Session Hijacking Works (Wallarm, 2023). ... 5

Figure 4 Network Topology Simulation in the GNS3 ... 8

Figure 5 Network configurations of Attacker machine ... 9

Figure 6 Network configurations of Vulnerable server ... 9

Figure 7 Network configurations of Windows machine .. 10

Figure 8 Scanning server with Nmap .. 11

Figure 9 Port scanning packet capture via Wireshark ... 11

Figure 10 Pinging Attacker’s IP from the input field ... 12

Figure 11 Execution of arbitrary command in DVWA .. 12

Figure 12 Listener started in the attacker machine ... 13

Figure 13 Reverse shell payload inserted as input .. 13

Figure 14 Reverse shell from server received ... 14

Figure 15 Gathering information inside server's system .. 14

Figure 16 User changed in the server's system .. 15

Figure 17 Sudoers privilege enumeration in server's system .. 15

Figure 18 Vertical privilege escalation in the server .. 16

Figure 19 Backdoor creation in the server's system .. 17

Figure 20 Inserting cookie stealing payload .. 18

Figure 21 Python listener at port 8080 .. 18

Figure 22 Logged in as new user via windows machine ... 19

Figure 23 Payload Injected web page visited by the user ... 19

Figure 24 Cookie received by the attacker .. 20

Figure 25 Before applying the user's cookie ... 20

Figure 26 After applying the user's cookie .. 21

Figure 27 Code vulnerable to command injection ... 22

Figure 28 Sanitized code for command injection prevention ... 22

Figure 29 Command injection attack blocked .. 23

Figure 30 Sanitized code for XSS injection prevention.. 23

Mingmar Lama 1

1. Introduction

Most businesses and operations now heavily rely on online platforms or IT resources

because of the information technology industry's explosive growth. As a result, these

companies are exposed to attacks aimed at their IT infrastructure. Consider a hospital

that makes use of a router to control network traffic. A malicious attacker can target

and compromise the router if the right defences are not in place, disrupting the

hospital's online operations. Unfortunately, the ongoing expansion of the IT industry

has increased the number of cyberattacks. While the reasons for these attacks may

vary, it is important to recognize that individual and organizational negligence can

unintentionally open the door for serious cyber threats.

This report explores web injection flaws as a method of disseminating attacks, with a

wider focus on aiming to compromise an entire machine rather than just the browser.

1.1 Current Scenario

Attacks that involve data breaches or ransom demands have increased

dramatically, affecting businesses and organizations worldwide. Attackers are

currently focusing on a variety of application domains. These assaults frequently

take the form of malware distribution, web application vulnerability exploitation,

the use of social engineering tricks, and even the launch of Distributed Denial of

Service (DDoS) attacks. In the following figure, top five vulnerabilities that were

commonly found to be exploited have been shown.

Figure 1 Top 5 Attack by Vulnerability Categories (Fox, 2022).

Mingmar Lama 2

1.2 Problem Statement

Due to their potential to exploit flaws in software systems, injection flaws like

remote code execution and cross-site scripting (XSS) present significant

challenges in the current situation. Attackers can take advantage of the ability to

remotely execute malicious code to control the targeted system, compromise

sensitive data, or launch additional attacks. In contrast, XSS enables malicious

actors to insert harmful scripts into web pages, which can result in unauthorised

access, session hijacking, or website defacement. These injection flaws are

dangerous because they can be used to get around security measures,

compromise user data, and interfere with how applications work normally. As a

result, people and organizations are exposed to serious risks to their privacy, data

integrity, and general security.

1.3 Aim and Objectives

The main aim of this report is to demonstrate web injection flaws and provide

mitigation techniques and evaluate through various tests.

The objective of this report is to:

• Providing in-depth information about cross-site scripting, including the

technical terms associated with it.

• Investigating the current state of web injection flaws, outlining the problems

they create, and offering brief solutions to address them.

• Demonstrating web injection flaws and mitigation techniques in a virtual

environment, while providing detailed explanations for each step along with

helpful screenshots.

• Critically evaluating the chosen mitigation technique, considering its pros

and cons, and conducting a Cost Benefit Analysis to assess its overall

effectiveness.

Mingmar Lama 3

2. Background

To increase awareness of web application security among developers and

organizations, OWASP introduced the Top 10 Web Application Security Risks, which

are updated on a regular basis. These threats cover a wide range of weaknesses. The

first risk is concentrated on injection vulnerabilities, including LDAP injection and SQL

injection attacks. The second and third risks, respectively, are compromised

authentication and sensitive data exposure. Other threats on the list include

deserialization attacks, XML External Entities (XXE) attacks, broken access control,

cross-site scripting (XSS) attacks, broken access control, attacks using known

vulnerabilities in components, and insufficient logging and monitoring (OWASP,

2021). These dangers are an essential tool for identifying the main web security

issues. The above vulnerabilities were listed in OWASP Top 10 2017 which has been

slightly changed in OWASP Top 10 2021.

Since this report is based on web injection flaws, we will be demonstrating two types

of injection flaws detailly i.e., Command injection chaining to compromise victim’s

machine and Session Hijacking through Cross-Site Scripting (XSS) injection to tamper

user’s session.

2.1 Command Injection

An operating system (OS) command injection is a type of cyberattack that allows

an attacker to run unauthorized commands. This attack is typically carried out by

exploiting a weakness in an application, frequently because of inadequate user

input validation (Imperva, 2023). By using this technique, the threat actor can

insert and carry out commands on the target system, possibly resulting in

unauthorized access and OS compromise.

For example, an attacker could use insecure user data transmission techniques

like cookies and forms to inject a command into a web server's system shell. The

threat actor can compromise the security of the server by taking advantage of this

vulnerability and using the privileges granted by the compromised application

(Imperva, 2023).

Mingmar Lama 4

Command injection can take on various forms, including the direct execution of

shell commands, the introduction of malicious files into a server's runtime

environment, and the exploitation of configuration file flaws like XML external

entities (XXE).

Figure 2 How command injection works (Imperva, 2023).

Some of the vulnerabilities that commonly lead to Command injection includes:

1. Arbitrary command injection

2. Arbitrary file uploads

3. Insecure serialization

4. Server-side template injection (SSTI)

5. XML external entity injection (XXE)

In any circumstances where existence of command injection in a web application

is found, an attacker can leverage the attack into furthermore sophisticated attack

leading to compromise the whole web server where the web application is hosted

at. We have included the demonstration of how a command injection can lead to

compromise the whole server in this report in the first web injection flaw test.

Mingmar Lama 5

2.2 Session Hijacking

The web session control mechanism, which oversees managing session tokens,

is exploited in the Session Hijacking attack. Within the HTTP communication

framework, these tokens are essential for classifying and controlling user

connections. A session token is generated and sent to the client's browser after

successful client authentication with the web server (OWASP, 2023). This token,

which is typically a variable-width string, can be used in several different places,

including the URL, the HTTP request header as a cookie, other areas of the

request header, or even the HTTP request body.

By stealing it or guessing a valid token, the Session Hijacking attack seeks to

compromise the session token. Through the hacked session token, the attacker

can gain control over the session and perform unauthorized actions by gaining

unauthorized access to the web server (OWASP, 2023).

Figure 3 How Session Hijacking Works (Wallarm, 2023).

The session token could be compromised in different ways. The most common

are:

• Session Sniffing

• Client-side attacks (XSS, malicious JavaScript Codes, Trojans, etc)

• Man-in-the-middle attack

• Man-in-the-browser attack

We have demonstrated the session hijacking attack in this report using the stored

XSS attack since this report is all about web injection flaws.

Mingmar Lama 6

2.3 Pre-requirements and Tools

2.3.1 Damn Vulnerable Web Application (DVWA)

The Damn Vulnerable Web Application (DVWA) is a PHP and MySQL web

application that is purposefully made to be highly vulnerable. Its main objective

is to help security professionals test their abilities and equipment in a setting

where doing so is allowed by law (Wood, 2023). DVWA also seeks to improve

web developers' comprehension of the procedures involved in securing web

applications. It also serves as a teaching tool for instructors and students to

study web application security in a structured classroom environment.

DVWA was used as our server where we demonstrated the web injection flaws

i.e., command injection and session hijacking. The above figure shows the

login page of how DVWA looks like.

2.3.2 Kali Linux

Kali Linux is a Debian-based Linux distribution that employs an open-source

business model which was previously known as BackTrack Linux. It is

intended specifically for advanced security auditing and penetration testing.

Kali Linux was used for enumerating all the ports in the vulnerable server

where we performed our tests. It was mainly used for the exploitation part as

it is famous for it.

2.3.3 Metasploitable

Metasploitable is a collection of different vulnerable services which comes as

a virtual machine iso file. It was used in our demonstration because the DVWA

server is present as a server in metasploitable.

2.3.4 Windows Machine

Microsoft released the operating system known as Windows 7 in 2009. A

widely used and well-liked operating system, Windows 7 was renowned for its

intuitive user interface, stability, and adaptability to a variety of hardware and

software. However, Microsoft stopped providing security updates for Windows

Mingmar Lama 7

7 as of January 14, 2020, making it more susceptible to security threats.

Windows 7 machine was deployed to test our session hijacking attack.

2.3.5 Graphical Network Simulation (GNS3)

GNS3 is a freely available, open-source software that has a thriving

community of more than 800,000 users, and it is constantly improved and

maintained. You can connect with other students, network engineers,

architects, and many other people who have downloaded GNS3 over 10

million times in total when you join the GNS3 community (GNS3, 2023). GNS3

is widely used by businesses around the world, including well-known Fortune

500 companies.

GNS3 was used to establish and simulate a real like network topology for our

attack demonstration where all our VMs were used. Cisco 3700 Router

Dynamips was installed and used as the internet gateway for our network

simulated environment.

2.3.6 VMware Workstation Pro

VMware Workstation is a suite of software that lets you run virtual machines,

containers, and Kubernetes clusters right on your desktop. With Workstation

Player, you can easily operate a single virtual machine using a graphical

interface or command line tools like 'vmrun'. It's perfect for creating a safe

environment on your personal computer where you can run different operating

systems without worrying about security or compatibility issues (VMware,

2023). Workstation Player is also widely used in educational settings, allowing

students to explore and learn more about the fascinating world of information

technology and computer systems.

We used workstation pro for this project because it has better features than

that of just workstation player. We created VMs for attacker machine (Kali

Linux), vulnerable server (Metasploitable / DVWA), and a windows machine.

Mingmar Lama 8

3. Demonstration

3.1 Network Simulation

To successfully carry out the attack, the network was simulated in the GNS3. The

Server machine is used as the server hosting the application vulnerable to the

injection attacks. Then the Kali Linux machine is named as Attacker which is used

to attack the browser. The Windows machine is the victim machine for our session

hijacking attack.

Figure 4 Network Topology Simulation in the GNS3

In the above network topology, the router plays a crucial role in routing network

packets within the network and the internet. To establish connectivity between the

simulated network and the internet, the cloud was configured to utilize Network

Address Translation (NAT) provided by VMware. In terms of the router's interface

configuration, DHCP was enabled on the fa0/0 interface and the IP it was assigned

was 192.168.197.2/24. The fa1/0 interface was assigned a static IP address of

10.10.10.1/24. The figure below illustrates the specific IP configuration for both

interfaces on the router.

All the devices in GNS3 and VMware were tested and configured such that each

endpoint devices could communicate with each other and reach the internet via

the router (Gateway).

Mingmar Lama 9

3.2 IP Addresses of machines

The machines were verified to check if their IP address were configured properly

same as the IP address in our network topology. We used network commands

accordingly to the OS platform of the machines. All the configurations of the

network in the machines have been included below.

Figure 5 Network configurations of Attacker machine

We had configured our attacker machine to have a static IP address i.e.,

10.10.10.254/24 as you can see in the above figure.

Figure 6 Network configurations of Vulnerable server

Mingmar Lama 10

In same manner, we also had configured our server machine to have a static IP

address i.e., 10.10.10.13/24 as you can see in the above figure.

Figure 7 Network configurations of Windows machine

In same manner, we also had configured our windows machine to have a static

IP address i.e., 10.10.10.15/24 as you can see in the above figure.

As you can verify that all our network configuration for the machines is same as

in the network topology which we created in the GNS3.

Mingmar Lama 11

3.3 Demonstration of Command Injection

After verifying all the network configuration and connectivity between the devices,

we ran all the machines to proceed with the attacks.

3.3.1 Active Reconnaissance

After all the machines were up, we opened the terminal in the attacker machine

and began scanning the server using Nmap which had the IP address of

10.10.10.13/24 which can be seen in the figure below. We also verified the

port scan done by the Nmap via Wireshark which is a network packet analysis

tool.

Figure 8 Scanning server with Nmap

Figure 9 Port scanning packet capture via Wireshark

Mingmar Lama 12

3.3.2 Enumeration

We found that the server was hosting a web service which was most like to be

DVWA server in our case and then logged in to the web application and set

the security level to low so that we could test all our attacks.

Figure 10 Pinging Attacker’s IP from the input field

Here, we tried running the service normally and in a non-malicious way as it

was more likely to have been developed for that. In real world scenario,

developers could most likely develop such services without implementing any

server-side validations and input sanitization which in this case when the

security is set to low has these vulnerabilities in the application.

After playing around with the input field, we then tried inserting arbitrary shell

commands to test our attacks which in fact was executed by the application.

Figure 11 Execution of arbitrary command in DVWA

Mingmar Lama 13

3.3.3 Exploitation

After verifying that the input field was indeed vulnerable to command injection,

we started netcat to listen at port 6969 to receive reverse shell from the server.

Figure 12 Listener started in the attacker machine

Figure 13 Reverse shell payload inserted as input

Mingmar Lama 14

Figure 14 Reverse shell from server received

After executing the payload that we provided in the input field in the web

application we got hit for reverse shell in our attacker machine. We then

improved our terminal by importing various python libraries and played around

to enumerate the system for further exploitation.

After a while, we found that there was a user named “msfadmin” in the server

and decided to change our session to that user by providing its username as

password and we got a success again. This indicates a pure security

misconfiguration in the server which in fact can also be found to have been

seen among many system administrators around the world. It is seen that most

people don’t change their default hence they get vulnerable to attacks like

such.

Figure 15 Gathering information inside server's system

Mingmar Lama 15

Figure 16 User changed in the server's system

3.3.4 Privilege Escalation

We have demonstrated quite a few attack techniques using the web injection

flaw already that includes the command injection itself chaining it to get a

reverse shell in the attacker’s machine and then enumerated to find out

security misconfiguration for the msfadmin user for not changing its default

password.

Figure 17 Sudoers privilege enumeration in server's system

Mingmar Lama 16

We proceeded to exploit furthermore via enumerating the system now as the

msfadmin user. After we were done with the enumeration, we again found that

the msfadmin user had all the permission to execute commands in the system

which has been shown in the figure above. So, without any hesitation, we tried

to switch user to root by providing the msfadmin’s password and got into root

account.

Figure 18 Vertical privilege escalation in the server

This in fact is another finding of security misconfiguration in the server as the

user was given to run all the commands with privilege.

3.3.5 Post-Exploitation

We now have all the permissions in the server’s system following all the steps

and processes with have done until now. The privilege escalation showed the

importance of proper security configuration in any systems.

An attacker would most likely want to set up a backdoor access in the system

in this case for further actions as per his/her needs. We pretending as an

attacker also added our public key in the authorized keys for maintaining

access for future purpose.

Mingmar Lama 17

Figure 19 Backdoor creation in the server's system

The next step would be to get rid of all the footprint that we created in the

system, but the above tests were only for demonstration and were done solely

for ethical and educational purpose. Hence, we didn’t remove any footprints

that we created in the system.

Mingmar Lama 18

3.4 Demonstration of Session Hijacking via XSS

The session hijacking attack was carried out implementing Stored Cross Site

Scripting (XSS) which is a server-side attack as the payload gets stored in the

server and in any case, users visit or interact with the payload, the processes get

executed.

3.4.1 Payload Injection

We have crafted our own payload for this such that if the victim loads the page

or the content, it sends its cookie to the attacker’s IP i.e., 10.10.10.254 at port

8080. Below is the process shown where the payload is inserted by the

attacker in the input field which gets stored in the database of the server and

can be viewed by other users as well.

Figure 20 Inserting cookie stealing payload

Figure 21 Python listener at port 8080

Mingmar Lama 19

3.4.2 Interaction of user with the payload

After the listener and the payload injection was set up, we opened the windows

machine and logged into the same web application as gordonb user and

visited the page where the XSS payload for session hijacking was stored.

Figure 22 Logged in as new user via windows machine

Figure 23 Payload Injected web page visited by the user

Mingmar Lama 20

The error alert popped up in the user side which could possibly indicate the

payload executed and the cookie was sent to the port where attacker was

listening. After checking the attacker’s machine, it was verified that the cookie

indeed was sent to the attacker. The below figures show the cookie stealing

demonstration.

Figure 24 Cookie received by the attacker

3.4.3 Session hijacking using the cookie

In the attacker’s side, it was logged in as username admin in the web

application and to change the session into the user of which the cookie was

stolen, inspect / developer mode was opened and in the storage section, the

PHPSESSION parameter’s value was set to the new cookie.

Figure 25 Before applying the user's cookie

Mingmar Lama 21

Figure 26 After applying the user's cookie

The above two figure shows the actual way to modify user’s cookie to take

over / tamper users’ session. As you can see in the first figure, the user was

admin and after applying the cookie, the user was changed to gordonb. This

indicates the session hijacking attack. These types are commonly used and

are easy to exploit via various techniques.

Mingmar Lama 22

4. Mitigation

The mitigation for both attack that were demonstrated in the above sections could

have been done by proper code sanitization and input validations. The sanitized codes

could have prevented the attack from the first place have been included below.

4.1 Mitigation of the command injection

The code below was the code that had the command injection flaw as it doesn’t

check for any input leading it to be vulnerable to such attacks.

Figure 27 Code vulnerable to command injection

The code above could have been sanitized to only accept the IP addresses. Below

is the sanitized code that implements improved input validation which could

possibly defended against various command injection attacks.

Figure 28 Sanitized code for command injection prevention

Mingmar Lama 23

The sanitized code was implemented to check if it would block the payload that

we used in the demonstration for command injection. It was verified that the code

indeed blocks the attack to get successful hit.

Figure 29 Command injection attack blocked

4.2 Mitigation of the session hijacking via XSS

The code for XSS injection could have been sanitized to filter out various special

characters and keywords to prevent the attack. Below is the sanitized code that

implements improved input validation which could possibly prevented against

various command injection attacks.

Figure 30 Sanitized code for XSS injection prevention

Mingmar Lama 24

5. Evaluation

Implementing measures like Web Application Firewalls (WAF) and Content Security

Policies (CSP) can help reduce the risk of injection attacks within an organization. A

plan is presented in the report's mitigation section to address the problem

successfully. This includes, among other advised actions, thoroughly sanitizing user

inputs, implementing CSP Headers, using antivirus software, and integrating browser

add-ons like No Script. The advantages and disadvantages of the mitigation strategies

has been described below.

5.1 Advantages of the mitigation strategy

The advantages of the mitigation strategy are as follows:

• Thoroughly sanitizing user input before execution acts as a preventive

measure, ensuring that the input is free from malicious content, thereby

averting potential attacks.

• Utilizing browser extensions like NoScript provides protection by blocking

the execution of malicious scripts, effectively mitigating the impact of stored

XSS and other injection attacks in the victim's browser.

• Employing anti-virus software adds an extra layer of defence, guarding

against malware attacks and enhancing security by scanning email

attachments, identifying malicious links and scripts, and offering

comprehensive protection.

• Implementing Content Security Policies (CSPs) allows for the selective

loading of scripts and code exclusively from trusted and legitimate sources,

significantly reducing the likelihood and impact of Cross-Site Scripting

attacks.

• Deploying Web Application Firewalls (WAFs) acts as a defence

mechanism between the application and the internet, intercepting and

blocking malicious requests and scripts before they can reach the actual

web server, effectively preventing the attack.

Mingmar Lama 25

5.2 Disadvantages of the mitigation strategy

The disadvantages of the mitigation strategy are as follows:

• Using content security policies requires users and organizations to manage

and update a whitelist of domains, which adds complexity. The functionality

of both web applications and extensions may be restricted by certain

browsers, which limit the ability of extensions to inject their scripts.

• Implementing Web Application Firewalls (WAFs) can increase the

consumption of CPU resources since each network packet needs to be

analysed. This process can lead to longer processing times, potentially

impacting network performance and introducing latency.

• While anti-virus programs are effective in detecting known attacks based

on their signatures, they may fail to identify attacks with different strategies,

methodologies, or signatures. This limitation means that certain malicious

attacks may not be completely prevented or detected by the anti-virus

software.

• Implementing these security measures requires proper configuration,

maintenance, and monitoring to ensure their effectiveness. Neglecting

regular updates and adjustments may lead to vulnerabilities or false

positives/negatives, reducing the overall security posture.

5.3 Cost Benefit Analysis (CBA)

A cost-benefit analysis is a method used by businesses to assess the feasibility

of various decisions. The analyst evaluates the potential benefits anticipated from

a specific circumstance or course of action and weighs them against the overall

costs associated with taking that course of action (Hayes, 2023). In some

instances, consultants or analysts take things a step further by creating models

that put a monetary value on immaterial elements, like the benefits and drawbacks

of living in a particular location. The Cost Benefit Analysis is carried out by

calculating using the following formula.

CBA = ALE (Prior) - ALE (Post)

Mingmar Lama 26

ALE Prior = the annual lost expectancy of the impact before implementing the

control

ALE Post = the annual lost expectancy of the impact after implementing the

control

Given that the suggested mitigation strategies are mostly free or incur an annual

cost of no more than $2500 in total, the potential financial impact of the issue can

exceed $25000+ depending on the severity of the attacker's actions, as previously

illustrated. Thus, by putting the mitigation strategies into practice, the companies

can continue to operate profitably even though it will have to pay for web

application firewalls and antivirus software.

Mingmar Lama 27

6. Personal Reflection

The assigned individual coursework was successfully completed by conducting a

practical network simulation and attack within the GNS3 architecture. The attack

leveraged the command injection vulnerability and session hijacking via Stored XSS

in DVWA on the Metasploitable Linux where the victim machine was running

Windows, while the attacker machine was Kali Linux. The outcome of the attack

revealed that the impact of injection flaws could extend beyond imagination.

It is important to note that the attacks were executed solely within the virtual

environment of GNS3, adhering to ethical norms and cyber ethics. The coursework

not only provided guidance on utilizing the necessary tools but also facilitated the

learning of attack techniques, strategies, and practical solutions for mitigating such

threats.

Upon completing the attack, it became evident that the impact surpassed the

boundaries of the browser itself. Extensive research was conducted to identify the

most effective strategies and methodologies for multiplying the attack's impact. This

research also aided in determining the best mitigation techniques for countering the

effects of injection attacks.

Throughout the process of attacking the web server, I encountered errors and

challenges that contributed to the development of my confidence in understanding the

potential impact of injection attack. Despite the assistance received from teachers and

thorough research, I acknowledge that this coursework is not flawless, as there is still

much to learn and implement. Nonetheless, it has significantly boosted my confidence

and knowledge in working with attack and mitigation methodologies and strategies,

preparing me for future endeavours in this field.

Mingmar Lama 28

7. References

Fox, J. (2022, December 27). Cybersecurity Statistics for 2023. Retrieved from

cobalt.io: https://www.cobalt.io/blog/cybersecurity-statistics-2023

GNS3. (2023). Getting Started with GNS3. Retrieved from

https://docs.gns3.com/docs/

Hayes, A. (2023, March 28). What Is Cost-Benefit Analysis, How Is it Used, What

Are its Pros and Cons? Retrieved from Investopedia:

https://www.investopedia.com/terms/c/cost-benefitanalysis.asp

Imperva. (2023). What is Command Injection? Retrieved from

https://www.imperva.com/learn/application-security/command-injection/

OWASP. (2021). OWASP Top Ten. Retrieved from owasp.org:

https://owasp.org/www-project-top-ten/

OWASP. (2023). Session hijacking attack. Retrieved from owasp.org:

https://owasp.org/www-community/attacks/Session_hijacking_attack

VMware. (2023). What is VMware Workstation. Retrieved from

https://www.vmware.com/products/workstation-pro/faq.html

Wallarm. (2023, May 7). Session hijacking attack. Retrieved from wallarm.com:

https://www.wallarm.com/what/session-hijacking-attack

Wood, R. (2023, May 7). DVWA. Retrieved from https://github.com/digininja/DVWA

